Inventory optimization
Presenter: Dmitrii Vrubel, Senior Developer

Optimize Design Experiment Innovate
Inventory optimization challenges

The analytical approach to inventory optimization: pros & cons

Simulation-based inventory optimization:
 – Safety stock estimation: taking into account operational and disruptive risks.
 – Multi-echelon inventory management: considering stocks across the whole supply chain, including multi-tier demand.
 – Capturing the complex behavior of supply chains

Q&A session
Inventory optimization challenges
What is stock

• **Inventory**, or **stock**, is the goods and materials that a business holds for the ultimate goal of resale

• Stocks are evil:
 – No profitability until they are sold
 – Possession costs
 – Frozen assets
 – Need storage area
 – Maintaining and handling

• Stocks are good:
 – Ultimate goal is to provide required service level for end customers or production

• The main objective of inventory management:
 – Find the balance between good and evil
There are different kinds of stock

• Keep the operations going
 – Raw materials stock
 – Work-in progress stock
 – Maintenance, repairs and operations

• Financial saves
 – FTL transportation policy
 – Supplier discounts
 – Batch production

• Demand driven stock
 – Stock for peak season
 – Safety stock to provide required service level
 – Stock to mitigate risks

• Other
 – Stock for future price changes
 – Simplified/periodic inventory review policies
 – …
How demand affects stocks

• **Demand**
 – Period: 1 day
 – Quantity: 10

• **Supply**: 4 days

• **Inventory Policy**
 – Reordering point: 40
 – Order size: 80

Ideal Inventory

Constant demand
How demand affects stocks

- **Demand**
 - Period: 1 day
 - Quantity: \texttt{normal(10,4)}

- **Supply**: 4 days

- **Inventory Policy**
 - Reordering point: 40
 - Order size: 80

![Graph showing variable demand and inventory with variable demand]
How demand affects stocks

- **Demand**
 - Period: 1 day
 - Quantity: 10

- **Supply:** 2-5 days

- **Inventory Policy**
 - Reordering point: 40
 - Order size: 80
How demand affects stocks

• **Demand**
 – Period: 1 day
 – Quantity: normal(10, 4)

• **Supply**: 2-5 days

• **Inventory Policy**
 – Reordering point: 40
 – Order size: 80
The analytical approach to inventory optimization: pros & cons
Traditional approaches to a stock management

• Simple (guessing)
 – Stock finished goods for 15 days of demand
 – Stock raw materials for 1 month of production

• Analytical
 – Consider supply chain as a mathematical model
 – Calculate stock based on input parameters (e.g. service level)

• Best practices (experience)
 – Implement working rules without any improvements

• Outsourcing (I want to believe)
 – Integrate an Inventory management system with no detailed knowledge about how it works
Analytical approach

- **Demand**
 - Period: 1 day
 - Quantity: \textit{normal}(10,4)

- **Supply**: 4 days

- **Inventory Policy**
 - Reordering point: 40
 - Order size: 80

\[
SS = Z_\alpha \cdot \sqrt{E(L)\sigma^2_D + (E(D))^2\sigma^2_L}
\]

\[
= 13.2
\]
Analytical approach

- **Demand**
 - Period: 1 day
 - Quantity: 10

- **Supply:** 2-5 days

- **Inventory Policy**
 - Reordering point: 40
 - Order size: 80

\[
SS = Z_\alpha \times \sqrt{E(L)\sigma_D^2 + (E(D))^2 \sigma_L^2}
\]

We do not know the actual distribution for lead time!
Analytical approach: cons

- Demand and supply time supposed to be normally distributed
 - Real demand and supply time cannot be negative
 - Need to find distribution parameters from history/forecast
 - Actual distribution is not necessarily normal

- All values supposed to be independent

- Different calculation for each “season”

- Multi-tier supply chain
 - Single-echelon optimization for each tier
 - Demand propagated upwards from lowest tier
 - Replenishment strategies are applied to one tier without regard to its impact on the other tiers
Analytical approach: cons

• It’s almost impossible to consider complex Supply Chain behavior, such as:
 – Returns
 – Additional processing time depending on order size
 – Complex inventory policies (like MRP)
 – Policies with periodic review
 – Variation or conditional behavior within the supply chain
Simulation-based inventory optimization
What is Dynamic Simulation Modeling

- A Simulation model is described as a set of **logical rules**
 - Customer places orders for 300 units per day 4 days a week
 - Initial inventory is 3000. If inventory is below 2000 the DC orders a batch of 3000 units
 - If factory has enough orders for 3000 units then production is started
 - If supplier workers are on strike it will not process the orders

- Simulation is the process of executing the **logical rules** over time
 - If raw materials stock drops below 100m³ order 300m³

- The output of a simulation is the behavior of a system over time
 - Customer places orders for 300 units per day 4 days a week
 - Initial inventory is 3000. If inventory is below 2000 the DC orders a batch of 3000 units
 - If factory has enough orders for 3000 units then production is started
 - If supplier workers are on strike it will not process the orders
Dynamic simulation advantages

• No need for formulas
• Reproduce supply chain behavior in time
• Work with individual orders and shipments, not averages
• Capture all supply chain details
 – Polices
 – Fleets
 – Variability
 – Decisions
 – Schedule
• Easily scalable and adjustable
How ALX Performs Inventory Optimization

- **Quantity**
 - "Reorder up to" quantity
 - Reorder point

- **Simulation modeling time**
 - Safety stock to provide 100% service level
 - Redundant safety stock
 - Actual inventory behavior
 - Ideal inventory dynamics

Safety stock to provide 100% service level
Safety stock estimation

• Demo #1: Operational risks
 – Demand variability
 – Lead time variability

• Demo #2: Disruption risks
 – Supplier shutdown
Multi-echelon Inventory Management

• **Goal:**
 - To deliver the desired end customer service levels with minimum inventory investment among the various echelons

• **Requirements for true multi-echelon inventory optimization**
 - Avoid multiple independent demand forecasts in each echelon
 - Account for all lead times and lead time variations
 - Monitor and manage the bullwhip (variability) effect
 - Enable visibility throughout the supply chain
 - Account for various replenishment strategies

• **Demo #3: Multi-tier supply chain**
 - To satisfy all of the above requirements ALX uses simulation modeling to perform inventory optimization
Capturing the complex behavior of supply chains

- Dynamic simulation allows to describe all Supply Chain behavior, such as:
 - Complex polices (MRP, periodic review polices)
 - Limited resources (fleet, storage)
 - Customers behavior (ELT, returns)
 - Seasonality
 - Any other

- Demo #4: MRP policy
 - The purpose of Material Requirements Planning in the model is the daily generation of orders and orders expectations based on forecasted inventory and safety stock levels
Another possibilities

- Compare costs and Service Level with different inventory policy parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Service Level by Products</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>min</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter</td>
<td>Filter</td>
</tr>
<tr>
<td>r: 60</td>
<td>0.688</td>
<td>0.551</td>
</tr>
<tr>
<td>r: 70</td>
<td>0.808</td>
<td>0.638</td>
</tr>
<tr>
<td>r: 80</td>
<td>0.921</td>
<td>0.83</td>
</tr>
<tr>
<td>r: 90</td>
<td>0.939</td>
<td>0.885</td>
</tr>
<tr>
<td>r: 100</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Another possibilities

- Compare carrying costs vs transportation costs with different batch sizes

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Description</th>
<th>Inventory Carrying Cost mean</th>
<th>Total Cost mean</th>
<th>Transportation Cost mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Iteration 1</td>
<td>23,940</td>
<td>50,756.815</td>
<td>23,261.815</td>
</tr>
<tr>
<td>2</td>
<td>Iteration 2</td>
<td>26,088</td>
<td>52,661.815</td>
<td>23,021.815</td>
</tr>
<tr>
<td>3</td>
<td>Iteration 3</td>
<td>27,426</td>
<td>54,357.815</td>
<td>23,361.815</td>
</tr>
<tr>
<td>4</td>
<td>Iteration 4</td>
<td>31,520</td>
<td>58,221.815</td>
<td>23,181.815</td>
</tr>
<tr>
<td>5</td>
<td>Iteration 5</td>
<td>27,240</td>
<td>53,781.815</td>
<td>23,031.815</td>
</tr>
</tbody>
</table>
Another possibilities

• Define production or supply schedule based on demand and inventory polices
And much more...

• Visibility of any metric in the Supply Chain
 – CO2 emission
 – Resources utilization
 – Lead times

• All details captured
 – Production process
 – Fleet
 – Schedules

• Integration with business processes
 – Digital twin
 – Control tower
Upcoming events

March 7, 2019 - anyLogistix Seminar (in Japanese) - Kawasaki, Japan
March 18-20, 2019 - anyLogistix Training - Saint Petersburg, Russia
March 28, 2019 – Free Transportation Optimization webinar - Online
April 3-5, 2019 - anyLogistix Training - Oakbrook Terrace, IL, USA
April 17-18, 2019 - The AnyLogic Conference - Austin, TX, USA