Case description – What we were asked to do

About Client
The Client is a major Russian telecom company operating a country-wide transportation network. The company provides B2C (business to customer), B2B (business to business), B2O (business to operator) and B2G (business to government) telecom services.
The Client has a single-tier logistics network with around 150 warehouses, 2,500 points of sale and about 20,000 operational sites holding inventory.

Client’s request
The Client chose Deloitte CIS to develop an optimal logistics network model that would match its future demand forecasts and inventory optimization targets while maintaining a high level of logistics service at operational sites and points of sale.
During the project we answered the following questions:
• What is the optimal hierarchy for Client’s network – 1- or 2-tier?
• What are the costs and effects of implementing various inventory optimization policies jointly with network optimization?
• Warehouses of what capacity and in what locations will the Client need considering future demand and inventory optimization targets?
• What is the optimal network transformation plan, including inventory relocation and timeline of warehouse closings?
Network optimization approach – How we did it

**Estimate high-level business case based on benchmarks**

- Define with stakeholders three key optimization hypotheses:
  - *Reduce the number of small warehouses*
  - *Redirect delivery to seven regional DCs*
  - *Consolidate inventory in regional DCs*

- Develop eight initiatives for network optimization that address the three hypotheses

- Calculate a business case for these initiatives based on network optimization benchmarks

- Define six additional non-cost effects that will be triggered by network optimization

**Develop optimization concept and AS-IS network model**

- Tune up automated logistics data processing from ERP system
- Produce current logistics network performance dashboard
- Assess current logistics network efficiency
- Build and calibrate a baseline model of current logistics network with about ~99% cost accuracy
- Approve the baseline model with stakeholders

**Evaluate development scenarios of TO-BE network**

- Design six TO-BE scenarios with three network structures and two inventory policies for each structure
- Conduct TO-BE scenario modeling (six runs)
- Define annual logistics costs for six scenarios and estimate costs for transformation periods
- Create visual dashboard reports for each scenario to validate results with stakeholders

**Calculate business case to choose optimal TO-BE scenario**

- Select optimal scenario for each of the seven regions based on cost, service level and implementation risks
- Compose the target scenario based on the combination of optimal scenarios for the seven regions
- Model target scenario to assess transformation costs for current year with input on warehouse closure plan
- Develop logistics network transition plan
Optimization scenarios – How we did it

**Baseline scenario**
99% model accuracy vs. budget/forecast
Optimization of existing transportation routes without closure of any warehouses

**Local warehouse optimization**
11% decrease in logistics costs | 17% lower inventory
Optimization of number and capacity of warehouses organized in a single-tier network

**Delivery centralization to regional DCs**
9% decrease in logistics costs | 47% lower inventory
Optimization of number and capacity of storage facilities, creation of a two-tier network of regional DCs and local warehouses. Suppliers deliver to DCs and a few selected local warehouses

**Delivery centralization and closure of local warehouses**
22% decrease in logistics costs | 78% lower inventory
Optimization of number and capacity of DCs and closure of all the local warehouses
Case results

Step-by-step road map of transition from current network to target state taking into account ongoing projects and other network related opportunities.

Recommendations on inventory policies considering network optimization scenarios.

The project involves a significant increase in the logistics efficiency, including:

- Reduction of integral logistics costs by 9%
- Reduction of the number of warehouses by 28%
- Transportation cost reduction by 5%
- Target Logistics network supports:
  - Total inventory level reduction by 18%
  - Inventory turnover increase by 26%

Automated solution for cleaning and organization of data obtained from ERP.

Logistics network performance dashboard.
Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as "Deloitte Global") does not provide services to clients. Please see www.deloitte.com/about for a more detailed description of DTTL and its member firms.

Deloitte provides audit, consulting, financial advisory, risk management, tax and related services to public and private clients spanning multiple industries. Deloitte serves four out of five Fortune Global 500® companies through a globally connected network of member firms in more than 150 countries bringing world-class capabilities, insights, and high-quality service to address clients’ most complex business challenges. To learn more about how Deloitte’s approximately 244,000 professionals make an impact that matters, please connect with us on Facebook, LinkedIn, or Twitter.

This communication contains general information only, and none of Deloitte Touche Tohmatsu Limited, its member firms, or their related entities (collectively, the "Deloitte Network") is, by means of this communication, rendering professional advice or services. Before making any decision or taking any action that may affect your finances or your business, you should consult a qualified professional adviser. No entity in the Deloitte Network shall be responsible for any loss whatsoever sustained by any person who relies on this communication.

© 2017 Deloitte Consulting LLC. All rights reserved.